塔式太阳能光热电站蒸汽发生器冷启动系统研究
太阳能光热发电是将太阳能转化为可以储存的热能,再将热能转化为电能的过程。由于光热发电具有转换效率高、电能输出稳定、调峰能力强等优点,具有广阔的发展前景。蒸汽发生器系统是光热电站发电模块的重要组成部分,由于光热电站系统复杂,检修周期短,启停频繁,因此设计合理的蒸汽发生器冷启动系统尤为重要。
本文研究了蒸汽发生器的冷启动系统工艺流程、设备组成、选型计算等,具有良好的应用价值。
太阳能光热发电是将太阳能转化为可以储存的热能,再将热能转化为电能的过程。相对于传统的化石能源燃烧发电机组,光热电站具有经济性好、环保性好、资源可再生等优点。相比于光伏与风电等技术,光热发电的最大优势在于相对稳定连续的电力输出,其特有的光-热-电转换模式中,热能具有良好的储存性能,使电力输出平稳,有利于并网。
目前光热发电基本类型为抛物线槽式技术、塔式技术、菲涅尔式和蝶式四种,其中槽式与塔式是光热发电的主流,并得到了广泛的发展应用。
塔式光热电站通常由聚光集热系统、储热系统、蒸汽发生器系统、汽轮机系统等主要系统组成。
图1:塔式光热电站系统示意图
太阳能通过定日镜聚焦到吸热器上,冷熔盐从冷熔盐罐中通过冷盐泵送至吸热器,并在吸热器中吸收镜场入射的能量,被加热为热熔盐储存到热熔盐罐中。热熔盐罐中的热熔盐通过热盐泵送入蒸汽发生器,同时给水被给水泵送到蒸汽发生器,熔盐与给水在蒸汽发生器中充分换热,产生过热蒸汽,送至汽轮机做功发电。
蒸汽发生器系统
蒸汽发生器系统是光热电站发电模块的重要组成部分,蒸汽发生系统的功能是实现熔盐与水工质之间的热交换。为了提高汽水循环的发电效率,一般采用带再热系统的汽轮机。来自热盐罐的高温熔盐分两路分别进入过热器与再热器,经换热后在出口混合,再依次进入蒸汽发生器和给水预热器,最后变为低温熔盐后返回低温储罐。
而来自高压加热器的给水则依次流经给水预热器、蒸发器和过热器,从而实现熔盐与水工质的热交换,产生符合汽轮机运行要求的过热蒸汽。过热蒸汽在汽轮机高压缸做功后,排汽进入再热器,经再热器熔盐加热后进入汽轮机中低压缸继续做功,最后排入凝汽器。蒸汽发生器系统示意图见图2。
图2:蒸汽发生器系统示意图
由于光热电站系统复杂,检修周期短,启停频繁,因此设计合理的蒸汽发生器冷启动系统尤为重要。为了防止冷启动时蒸汽发生器熔盐侧发生凝固,传统的启动方式通常设置单独的启动锅炉,冷启动之前通过启动锅炉系统向蒸汽发生器供应蒸汽加热给水至260℃以上,然后通入熔盐进行正常启动过程。此种方式存在以下缺点:系统复杂,造价较高,需要设置单独的高压启动锅炉;由于太阳能电站不消耗传统化石燃料,如果设置启动锅炉,需要给锅炉配套额外的化石燃料系统,且仅在冷启动时使用,利用率不高,投入与产出不匹配。
冷启动系统
为了解决以上问题,可采用以下蒸汽发生器冷启动系统,见图3.
图3:蒸汽发生器冷启动系统流程图
在原有蒸汽发生器系统中增加启动电加热器、外置循环泵设备。蒸汽发生器冷启动时,先把系统上满水。此时,低负荷预热器、启动电加热、省煤器、蒸发器充满水,汽包达到设定水位。开启外置循环泵,同时开启启动电加热器,关闭低负荷预热器出口隔离阀,关闭汽包出口调节阀,使系统中的水形成封闭循环回路。启动电加热器保持运行状态,外置循环泵持续运行使系统中给水温度保持均匀,并且缓慢升高。当温度超过100℃时,给水在汽包中发生汽化,使汽包压力逐渐升高,此时升温、升压过程同时进行。经过一段时间运行,最终整个系统给水达到设定温度260℃,此时对应的压力为4.7MPa,此时升温升压过程结束,关闭电加热器及外置循环泵。由于熔盐凝固点为230℃左右,熔盐进入蒸汽发生器不会发生凝固,此时通入熔盐进行正常启动过程。
电加热器选型及设计
1.电加热器选型计算
电加热器是冷启动系统中最重要的设备,电加热器选型是否正确直接关系到系统的安全可靠运行。电加热器的选型可使用以下公式进行计算。
V总=V1+V2+V3
其中
V总—蒸汽发生器系统中充水总体积m3
V1—汽包达到正常液位时水容积m3
V2—省煤器水容积m3
V3—蒸汽发生器水容积m3
Q=Cp*V总/Vl*(T2-T1)
其中
Q—加热过程所需总热量KJ
Cp—水比热容KJ/kg/k
Vl—水比容m3/kg
T2—加热终止水温℃
T1—加热起始水温℃
P=Q/t/3600
P—电加热器功率kW
t—加热持续时间h
2.电加热器设计
启动电加热器除了在机组冷启动期间运行之外,还需要考虑机组甩负荷工况,机组甩负荷时,汽轮机抽汽管道停止运行,给水温度降低,需要运行启动加热器加热给水,开始甩负荷瞬间给水流量仍为额定值,因此启动加热器设计流量需要考虑机组额定给水流量。给水温度应从常温加热到260℃以上,启动加热器工作温度一般取15℃-300℃。电加热器应能承受给水泵出口压头,设计压力一般取用给水泵出口管道设计压力。根据电加热器设计温度选择合适的材质,壳体及法兰接口采用碳钢材质,加热元件采用不锈钢材质。
电加热器由多个加热元件构成,功率密度一般为4W/cm2,加热器为恒功率设计,不设置功率调节装置。为了保证加热效果,加热器内部设有折流板和防冲板,给水在加热器中以错流形式流动。典型的加热器外形图见图4.
图4:启动电加热器外形图
由于电加热器给水设计压力较高,给水流量变化较大,且在加热器内部流体发生相变,工作条件复杂,因此在设计是还应进行有限元分析,模拟给水在加热器内部的加热过程,及流场变化规律。某项目电加热器温度、流场分布有限元分析图见图5。
图5:启动电加热器温度、流场分布图
通过有限元分析,得到不同压力下加热元件温度分布规律,见图6。
图6:加热元件温度随压力变化图
由以上有限元分析可知,加热元件表面最高温度随压力升高呈下降趋势,在0.1MPa至2MPa压力范围内,加热元件表面最高温度降低不明显,均在740K左右。超过2MPa压力,加热元件表面最高温度迅速降低,到达9MPa压力时,最高温度降低至620K左右。
温度的最高点集中在入口处折流板下部,因此可在靠近入口处折流板采取豁口、开孔等措施,增加该区域介质流动性,防止运行时出现超温,并且设计时应重点关注此处应力变化,防止出现因应力过大引起焊口拉裂出现泄漏问题。
考虑到在实际运行中电加热器是全功率工作,不设置温度调节装置,无法实现对出口温度的控制,还应在加热器出口设置温度测量元件,当温度超过设定值时及时停止加热器运行,保证设备及系统运行安全。
结论
(1)、由于光热电站系统复杂,检修周期短,启停频繁,因此设计合理的蒸汽发生器冷启动系统尤为重要。本文研究了一种新型的蒸汽发生器冷启动系统,只需在原有蒸汽发生器系统基础上增加启动电加热器、外置循环泵设备,无需其他配套系统,系统简单,经济性好。
(2)、本文研究了启动电加热器的选型计算方法,满足工程设计的需要。本系统相对于传统的设置启动锅炉的冷启动系统具有明显的优势。传统冷启动方法增加了化石燃料消耗量,且产生燃烧污染物。本系统使用电加热器加热给水,仅消耗少量电能,不消耗化石燃料,无污染物排放。节省传统化石燃料用量,环保性能好,具有良好的应用前景。
(3)、本文还简要介绍了启动电加热器的设计方法及设计中的注意事项,可以作为类似设备设计的参考。
【重要提醒】
↘↘点我免费发布一条保定本地便民信息↙↙(微信搜索13717680188加小编好友,注明保定,免费拉您进群聊),优先通过审核。内容来源网络如有侵权请联系管理员删除谢谢合作!
- 甘肃敦煌50MW光热电站有序复工,有望4月初完成主要尾工及缺
- 招标 | 内蒙古乌拉特中旗导热油槽式100MW光热发电项目熔
- 安彩高科拟与郑大智能投建年产2万套光热电站用定日镜系统项目
- 低成本储热替代蓄电池!这项颠覆性光伏+光热热电联产技术有望尽
- 华方为迪拜100MW塔式电站独家供应回转减速器,疫情期间稳定[图]
- FENIKS将为乌拉特100MW槽式光热发电项目提供清洗设备
- 总投资超3亿!塔式光热地标项目入选广东省2020年重点建设项[图]
- 凯盛大明甘肃玉门太阳能光热和光伏发电用聚光材料及深加工项目全[图]
- 太阳能光热联盟向科技部推荐33项国家重点研发计划“十四五”重[图]
- 凯盛大明玉门太阳能光热和光伏发电用聚光材料及深加工项目全面复[图]